Source code for bfgn.architectures.residual_flat_net

from typing import Tuple

import keras
from keras.layers import BatchNormalization, Conv2D

from bfgn.architectures import config_sections


[docs]class ArchitectureConfigSection( config_sections.BlockMixin, config_sections.BaseArchitectureConfigSection ): pass
[docs]def create_model( inshape: Tuple[int, int, int], n_classes: int, output_activation: str, block_structure: Tuple[int, ...] = config_sections.DEFAULT_BLOCK_STRUCTURE, filters: int = config_sections.DEFAULT_FILTERS, kernel_size: Tuple[int, int] = config_sections.DEFAULT_KERNEL_SIZE, padding: str = config_sections.DEFAULT_PADDING, use_batch_norm: bool = config_sections.DEFAULT_USE_BATCH_NORM, use_initial_colorspace_transformation_layer: bool = config_sections.DEFAULT_USE_INITIAL_COLORSPACE_TRANSFORMATION_LAYER ) -> keras.models.Model: # Initial convolution inlayer = keras.layers.Input(shape=inshape) if use_initial_colorspace_transformation_layer: intermediate_color_depth = int(inshape[-1] ** 2) conv = Conv2D(filters=intermediate_color_depth, kernel_size=(1, 1), padding='same')(inlayer) conv = Conv2D(filters=inshape[-1], kernel_size=(1, 1), padding='same')(conv) conv = BatchNormalization()(conv) else: conv = Conv2D(filters=filters, kernel_size=kernel_size, padding=padding)(inlayer) # Iterate blocks and subblocks subblock_input = conv for idx_block, num_subblocks in enumerate(block_structure): subblock = subblock_input for idx_sublayer in range(num_subblocks): subblock = Conv2D(filters=filters, kernel_size=kernel_size, padding=padding)(subblock) if use_batch_norm: subblock = BatchNormalization()(subblock) subblock_input = _add_residual_shortcut(subblock_input, subblock) filters *= 2 # Output convolutions output_layer = Conv2D( filters=n_classes, kernel_size=(1, 1), padding='same', activation=output_activation)(subblock_input) return keras.models.Model(inputs=[inlayer], outputs=[output_layer])
def _add_residual_shortcut(input_layer: keras.layers.Layer, residual_module: keras.layers.Layer): """ Adds a shortcut connection by combining a input tensor and residual module """ shortcut = input_layer # We need to apply a convolution if the input and block shapes do not match, every block transition inshape = keras.backend.int_shape(input_layer)[1:] residual_shape = keras.backend.int_shape(residual_module)[1:] if inshape != residual_shape: strides = (int(round(inshape[0] / residual_shape[0])), int(round(inshape[1] / residual_shape[1]))) shortcut = Conv2D( filters=residual_shape[-1], kernel_size=(1, 1), padding='valid', strides=strides)(shortcut) return keras.layers.add([shortcut, residual_module])